this issue we require more data, especially in the form of precisely measured bond lengths.

The structure described above is far from being typically ionic; but it is held together by forces which in their nature and stereochemistry seem to be fully typical of the elements present.

We are indebted to Professor D. W. J. Cruickshank for discussion of the results and to Dr J. A. S. Smith for helping to initiate the enquiry. One of us (T.A.B.) received financial support from the Department of Scientific and Industrial Research.

References

ATOJI, M. & RUNDLE, R. E. (1958). J. Chem. Phys. 29, 1306.
BERGHUIS, J., HAANAPPEL, IJ. M., POTTERS, M., LOOPSTRA,
B. O., MACGILLAVRY, C. H. & VEENENDAAL, A. L. (1955). Acta Cryst. 8, 478.

CARPENTER, G. B. (1952). Acta Cryst. 5, 132.

- CRUICKSHANK, D. W. J. (1961a). Acta Cryst. 14, 896.
- CRUICKSHANK, D. W. J. (1961b). J. Chem. Soc. p. 5486.
- CRUICKSHANK, D. W. J., PILLING, D. E., BUJOSA, A., LO-VELL, F. M. & TRUTER, M. R. 1961. Computing Methods and the Phase Problem in X-ray Crystal Analysis.
- NAKAMOTO, K., MARGOSHES, M. & RUNDLE, R. E. (1955). J. Amer. Chem. Soc. 77, 6480.
- PHILLIPS, D. C. (1954). Acta Cryst. 7, 746.
- PIMENTEL, G. C. & SEDERHOLM, C. H. (1956). J. Chem. Phys. 24, 639.
- ROLLETT, J. S. & SPARKS, R. A. (1960), Acta Cryst. 13, 273.
- SASS, R. L. & SCHEUERMAN, R. F. (1962). Acta Cryst. 15, 77.
- TAYLOR, P. G. & BEEVERS, C. A. (1952). Acta Cryst. 5, 341.
- TOMIIE, Y. & STAM, C. H. (1958). Acta Cryst. 11, 126.
- ZACHARIASEN, W. H. (1963). Acta Cryst. 16, 1139.

Acta Cryst. (1954). 19, 432

Structure Cristalline du Bronze de Vanadium-Lithium LiV₂O₅

PAR JEAN GALY ET ANTOINE HARDY

Service de Chimie Minérale (Paul Hagenmuller), Faculté des Sciences de Bordeaux, France

(Reçu le 26 janvier 1965)

LiV₂O₅ crystallizes in the orthorhombic system. The space group is $Pna2_1$ ($C_{2\nu}^{9}$), and the parameters are: a=9.702, b=3.607, c=10.664 Å. The structure has been determined by Patterson projections and refined by diagonal approximation. The atoms of oxygen are at the corners of distorted trigonal bipyramids surrounding vanadium atoms. These bipyramids associated in pairs with a common edge form chains parallel to the Oy axis. The lithium atoms, surrounded by oxygen atoms at the corners of octahedra, effect the cohesion between these chains.

LiV₂O₅ est la composition limite de la série des bronzes Li_xV₄⁴⁺V₂⁵⁺_xO₅ étudiée par Hagenmuller & Lesaicherre (1963). Pour x variant entre 0 et 1, trois phases apparaissent: Li_xV₂O₅ α solution solide de lithium dans la maille de V₂O₅ orthorhombique, Li_xV₂O₅ β monoclinique dont la structure a été décrite précédemment (Galy & Hardy, 1964) et Li_xV₂O₅ γ orthorhombique dont LiV₂O₅ est la formule limite.

Les cristaux de LiV_2O_5 sont obtenus par fusion sous courant d'argon à 750 °C dans une nacelle de platine, puis refroidissement lent. Ils se présentent sous la forme d'aiguilles prismatiques à base rectangulaire; leur couleur est bleu foncé à reflets métalliques.

L'étude radiocristallographique sur monocristal à été effectuée à l'aide du rayonnement Cu $K\alpha$.

Les données cristallographiques sont rassemblées dans le Tableau 1.

Tableau 1. Données cristallographiques relatives à

Dimensions de la maille	$a = 9,702 \pm 0,005$ Å
	$b = 3,607 \pm 0,003$
	$c = 10,664 \pm 0,009$
Groupe spatial	$Pna2_1 (C_{2v}^9)$
Dobs	$3,35 \pm 0,05$
Deale	3,38
Nombre de motifs par maille	Z=4

Les paramètres ont été précisés par la méthode du cristal oscillant. Le groupe d'espace a été déterminé à l'aide du rétigraphe Rimsky pour les plans h0l, h1l, h2l, h3l. Il a été confirmé par l'étude des plans réticulaires suivant les deux autres directions sur le goniomètre de précession de Buerger.

La mesure de l'intensité des taches sur les rétigrammes relatifs aux plans h0l, h1l, h2l, h3l a été faite avec le microdensitomètre Vassy MD3. La correction d'absorption n'a pas été faite.

Les facteurs de diffusion des divers ions sont tirés ou interpolés à partir des valeurs données par les International Tables for X-Ray Crystallography (1962).

A partir de la fonction de Patterson, projetée sur le plan xOz, la méthode de superposition de Clastre & Gay (1950) a permis de situer les atomes de vanadium. La place des atomes d'oxygène a été déterminée grâce à l'analogie de la chaîne de vanadium qui suit l'axe Oxdans la phase β ; cette hypothèse est confirmée par une synthèse de Fourier effectuée avec les différences des facteurs de structures observés et ceux calculés pour le vanadium seul.

Les atomes de lithium ont été placés après affinement des positions du vanadium et de l'oxygène (Fig. 2).

Le facteur d'agitation thermique est B = 2,50 Å² pour tous les atomes; le facteur de reliabilité pour les 78 taches visibles dans le plan *h*0*l* atteint 0,14.

Les coordonnées réduites des atomes sont rassemblées dans le Tableau 2, ainsi que les distances interatomiques. La coordonnée réduite y=0,000, mise en évidence pour tous les atomes de la maille élémentaire, se justifie par la faible valeur du facteur de reliabilité R=0,18 obtenue pour les 224 taches observées dans les plans h0l, h1l, h2l et h3l. Le Tableau 3 rassemble les valeurs des facteurs de structures observés et calculés pour les différents plans.

Les atomes de vanadium V(1) et V(2) se trouvent au centre de bipyramides triangulaires. Les bipyramides équivalentes sont groupées deux par deux avec une arête commune [O(4)-O(4') ou O(5')-O(5'')]. Le groupe relatif à V(1) est représenté par la Fig. 1(*a*).

Les chaînes formées par ces bipyramides s'allongent suivant l'axe Oy par l'intermédiaire des sommets O(4')et O(5''). Les groupes de bipyramides relatives à V(1)et V(2) sont reliés entre eux par un sommet commun O(1)[Fig. 1(b)]. Ils constituent des plans parallèles à xOy.

On peut remarquer que la bipyramide entourant V(1) est plus volumineuse que celle relative à V(2).

La faiblesse du facteur de diffusion du lithium et la marge d'erreur inhérente aux mesures des intensités

Tableau 2

Coordonnées réduites des atomes dans LiV2O5

					Nombre d'équ	ivalents	
	Atome	s x	У	Z	et positio	n	
	V(1)	0,3778	0,000	0,4980	4(a)		
	V(2)	0,0658	0,000	0,3977	4(a)		
	O(1)	0,462	0,000	0,035	4(a)		
	O(3)	0,292	0,000	0,365	4(<i>a</i>)		
	O(4)	0,573	0,000	0,431	4(a)		
	O(5)	0,430	0,000	0,012	4(a)		
	Li	0,183	0,000	0,217	4(<i>a</i>)		
		Distances (E	interatomiques rreur maximum	s dans LiV ₂ O ₅ e n: ±0,05 Å)	n Å		
V(1) - O(1)	2.02	V(2)–V(1)	3,30	Li(1)-O(3)	1,90	O(6'')-O(8)	2,92
V(1)–O(4)	2,02	V(2) - O(1)	1,69	Li(1)-O(6'')	1,90		
V(1)-O(3)	1,65	V(2) - O(2')	1,63	Li(1) - O(7)	2,16		
V(1) - O(4')	2,01	V(2) = O(5') V(2) = O(5'')	1,76	D(7) = O(8)	2,38		
O(1) = O(1)	2,98	O(1) - O(2')	2,04	O(3) - O(7)	3.05		
O(3) - O(4)	2,81	O(2') - O(5')	2.47	O(3)–O(8)	3,18		
O(4)–O(1)	3,94	O(5')-O(1)	3,31	O(6'')-O(7)	2,69		
				0(5'')			
						0(8)
(○ 0(4)		A				9
	\neg	(D(4')	0(1)	$\bigcap \Omega(2')$		
0(3)	\backslash			01		(7)	\
····	0(4')		/			/: /!	7
// ````````````````````````````````````	V(1')		10	$\sqrt{(2)}$	0(5'	Xa	X 0(3)
		00(2) 0(4)	$(\underline{1})$	$\langle 0(3) \rangle / / $	O(6)		
0(1)	、 / V(1) \		$\langle i \rangle$			T	/
	×0	/	$\setminus /\!\!/$	0(5'')			/
O(4	\mathcal{A}	0(3)	0	0(5)			١
			O(4')			0(/) o	(8)
	I		(<i>b</i>)			(C)	
	O(4')						
	(a)						

Fig. 1. Environnement oxygéné des atomes de vanadium et de lithium.

observées ne permettent pas d'effectuer un choix dans le plan h0l entre deux positions possibles, le facteur de reliabilité donné par le calcul étant du même ordre

Tableau 3

Facteurs	de	structure	observés	et	calculés

h k L	Fo	Fc	h k l	Fo	Fc	hkl	Fo	Fc
200	£7	54	105	54	45	3.0.10	14	12
200	20	27	205	25	10	4 0 10	22	24
400	64	64	205	22	32	5010	25	4
1000	13	11	405		.7	6 0 10	18	13
101		8	505	48	30	1 0 11	10	1
201	18	16	605	18	19	2011	12	12
301	68	73	7 0 5	· •	2	3011	13	12
401	15	6	805	1	6	4 0 11	10	12
501	19	14	905	1	6	0.012	17	19
601	17	12	0.0.6	14	12	1 0 12		1
7.01	46	48	106		6	2012	4	11
801	16	17	206	35	35	210	25	30
901	34	37	306	23	19	410	43	35
10 0 1	8	4	406	35	30	610	46	46
002	100	100	506	31	23	810		6
102	.31	37	606	16	13	1010	46	36
202	22	35	706		1	011	44	43
302	60	58	806	33	30	111	68	74
402	74	73	906		l á	211	32	30
502	54	52	107	47	34	311	25	21
602	40	35	207	27	21	411	19	16
702	1 40.	35	307	16	16	511	1,1	1
802	[1,2	407	20	23	611	16	
002	1	11	507	10	15	711	30	25
1002	1	7	607	16	17	811	1 30	6
1002	46	= 2	707	10	17	011	17	10
203	40	52	807		13	1011	1 12	14
303	21	17	006	48	55	112	50	87
403	36	20	1 0 0	15	16	212	35	1 42
503	40	40	208	12	1.0	212	1 35	2
603	37	1 10	3.0.8	24	25	412	20	23
703	1 10	20	408	15	10	512	11	4
803			5.0.8	12	10	612	47	10
903	15	1 16	608	1.2		712	39	46
1003	1	7	7 0 8	1	1	812	1 "	6
0.04	5	1 2	1 8 0 8	22	14	012	14	1 13
104	1 17	24	1 1 0 0	1	14	1012	23	17
204	25	21	200	1	1 1	1 0 1 3	1 10	15
3.04	54	60	309	32	1 11	113	1 10	1 7
404	52	50	409	18	16	213	1	
1	52	37	1 107	10	10	613	1	1
	1	1	11	4	1	1	1	1

Tableau 3 (suite)

h k l	Fo	Fc	h k l	Fo	Fc	h k l	Fo	Fc
504	38	43	509		3	313	24	33
604	34	22	609	1	< 1	413	10	2
704	14	10	709	24	28	513	55	53
804	35	35	0 0 1 0	33	47	613	19	19
904	12	10	1010		4	713	18	17
1004	9	6	2010	17	25	813	20	15
1013	14	8	319	33	28	913	21	21
114	Z4	28	419	ļ	4	624	23	15
214	70	89	519		3	724		7
314		9	619		5	824	30	26
414	39	65	719	19	15	125	44	36
514	23	27	1 1,10		< 1	225		9
614	18	11	2110		9	325	15	21
714	21	18	3110		6	425		5
814		4	4110	17	8	525	33	28
914	13	10	5110		9	625		12
10 1 4	12	5	6-1 10	24	22	725	Į –	<1
015	16	11	1111	19	11	026	1	7
115	9	7	2111		9	126		5
215		2	3 1 11	41	31	226	26	23
315		9	2.20	33	32	326		13
415		4	420	17	24	426	25	21
515	49	65	620	37	41	526	16	15
015	~	10	820	12	12	626	12	.9
115	26	33	121	ł	3	127	31	24
815		4	221	14	12	227	19	15
915	18	19	321	45	45	327	13	12
116	12	.6	421	12	4	427	22	17
216	55	81	521	10	10	527	18	12
316		5	621	12	8	627	15	13
416	25	42	721	35	34	028	38	38
516		<1	821		11	128		12
616		7	921	27	27	228	12	5
716	24	18	022	38	61	328	17	18
816		10	122	16	22	428	15	14
916		<1	222	12	19	129		9
017	53	42	322	40	37	229		<1
117	35	44	422	43	46	329	28	24
2,17	35	25	522	32	34	429	16	12
317		3	622	21	22	0 2 1 0	29	34
417	1	3	722		Z	1 2 1 0	1	3
517	12	15	822		9	2210	15	18
617	22	21	123	33	36	230	9	10
717	15	14	223	28	33	430	19	18
817	18	14	323	15	14	630	26	25
917	15	12	423	24	22	031	15	17
1			1				1	1 1
t	I	1 I	I	L		5	1	

Tableau 3 (suite)

h k l	Fo	Fc	h k l	Fo	Fc	hkl	Fo	Fc
118	27	38	523	27	28	131	29	31
218	27	38	623	23	25	231	12	16
318	17	18	723	12	13	331	19	20
418		5	823		1	431	• •	5
518	1	11	024		7	531		3
618	20	17	124	9	13	631		1 11
718	13	18	224	8	10	132	28	34
019	17	20	324	31	36	232	18	20
119	35	24	424	32	38	332		3
219	16	13	524	25	28	432		-10
			1			532		4
	1		1			632	23	24
			Į.			033	13	14
				1		133		4
			1			233		6
	1					333	16	14
				1	j	433	1	< 1
	1				{	533	31	25
	1		l.		1	633	13	10
			1			134	14	14
	1		1		· ·	234	32	41
						334		5
						434	21	30
	1					534	12	13
			4			0.35		4
			Ì			135		2
						235		1
	1	1				3 3 5		4
				1		435		2
			1			535	38	33
		1				136		4
				1	1	236	34	39
						336		1
	1	1		1	1	436	17	21
		1		ļ	1	037	28	21
				1		137	23	20
			1	1		237	14	13
		1	U	1	1	138	23	19
	1			1		238	18	19
				1	1	1		

(position Li(1) et position marquée d'une croix dans la Fig. 2: x=0,009; y=0,000; z=0,243).

La position finale choisie pour le lithium donnant le meilleur facteur de reliabilité pour l'ensemble des taches de l'espace observées [Li(1)] est un site octaédrique rappelant celui attribué par Wadsley (1957) dans une phase de composition $\text{Li}_{1,5}V_3O_8$. Cette position du lithium et la différence de volume constatée pour les bipyramides entourant V(1) et V(2) permettent de penser qu'un ion V⁴⁺ se trouve en V(1), la position V(2) étant celle d'un ion V⁵⁺, le pouvoir polarisant de V⁵⁺ étant plus marqué que celui de V⁴⁺. Les notations V⁵⁺ et V⁴⁺ ne doivent d'ailleurs pas être prises au pied de la lettre, la localisation électronique ne nous étant pas jusqu'ici exactement connue.

L'autre position possible du lithium (\times sur la Fig. 2) est moins satisfaisante tant pour les distances Li–O que pour le voisinage des atomes de vanadium et celui des atomes d'oxygène.

Le lithium assure la cohésion entre les plans formés par les chaînes de bipyramides. Le lithium joue d'ail-

Fig. 2. Projection de la structure de LiV₂O₅ sur le plan (010).

leurs un rôle identique dans la structure de $Li_{1,5}V_3O_8$, dans laquelle les chaînes V–O s'allongent suivant un plan.

Dans cette structure de type nouveau, le vanadium a nettement la coordinence 5, coordinence qui se manifeste d'une façon plus ou moins marquée dans d'autres composés du vanadium: V_2O_5 , $Li_xV_2O_5\alpha$, $Li_xV_2O_5\beta$, $Li_{1+x}V_3O_8\cdots$; les polyèdres d'oxygène ont l'enchaînement rencontré habituellement dans les structures où le vanadium se trouve à des valences élevées.

Le lithium, participant à la cohésion tridimensionnelle de la structure, permettrait d'expliquer un point de fusion et une dureté plus élevés pour LiV_2O_5 que pour V_2O_5 .

Références

CLASTRE, J. & GAY, R. (1950). J. Phys. Radium, 11, 75.

- GALY, J. & HARDY, A. (1964). Bull. Soc. Chim. Fr. 11, 2808.
- HAGENMULLER, P. & LESAICHERRE, A. (1963). C. R. Acad. Sci. Paris, 256, 170.

International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

WADSLEY, A. D. (1957). Acta Cryst. 10, 261.

Acta Cryst. (1965). 19, 435

The Crystal Structure of Tartronic Acid

BY B.P. VAN EIJCK, J.A. KANTERS AND J. KROON

Laboratorium voor Kristalchemie, Rijksuniversiteit, Utrecht, The Netherlands

(Received 11 December 1964)

Tartronic acid (COOH-CHOH-COOH) crystallizes in space group $P2_12_12_1$ with 4 molecules in the unit cell of dimensions a=4.485, b=8.813, c=10.895 Å. The structure has been solved from twodimensional photographic data and has been refined by least-squares with 534 three-dimensional diffractometer data. The structure consists of parallel infinite chains of molecules, each chain generated by a twofold screw axis and held together by hydrogen bonds between pairs of carboxyl groups. The molecules have no mirror symmetry.

Introduction

The structure determination of α -hydroxycarboxylic acids has revealed that in the crystalline state the atoms of the part of the molecule that may be designated as the hydroxyacetic acid group are coplanar in the undissociated acids and ions (Jeffrey & Parry, 1952). The same situation is met with in unsubstituted carboxylic acids as for the atoms of the propionic acid group; sometimes, however, the packing in the crystal seems to hamper this coplanarity (MacGillavry, Hoogschagen & Sixma, 1948). It is to be noted that in unsubstituted acids the carbonyl oxygen atom of the carboxyl group is situated at the side of the α - β carbon-carbon bond, whereas in α -hydroxy acids this carbonyl group is found at the side of the carbon-oxygen bond.*

In malonic acid each of the two carboxyl groups may in principle be coplanar with the β -carbon atom, but the structure analysis has revealed (Goedkoop & Mac Gillavry, 1957) that only one of the carboxyl groups is coplanar with the β -carbon atom, the other carboxyl group being rotated 90° with respect to the former; apparently steric hindrance excludes the simultaneous coplanarity. It seemed of interest to investigate the structure of α -hydroxymalonic acid (tartronic acid) in order to see to what degree the carboxyl groups in this molecule are coplanar with the hydroxyl oxygen atom.

Experimental

Orthorhombic crystals of tartronic acid are readily obtained from a butanol solution at room temperature. The unit-cell dimensions deduced from measurements (Cu Ka radiation, $\lambda(\alpha_1\alpha_2)=1.5418$ Å) on a General Electric single-crystal orienter equipped with a scintillation counter are $a=4.485\pm0.001$, $b=8.813\pm0.002$, $c=10.895\pm0.003$ Å. From systematic absences the space group is uniquely determined as $P2_12_12_1$. With four molecules in the unit cell the calculated density (1.84 g.cm⁻³) agrees with the density as determined by flotation (1.83 g.cm⁻³). The crystals are elongated along the shorter crystallographic axis and can be easily cleaved along (100) and (010).

The structure analysis was started by taking integrated equi-inclination Weissenberg photographs around the *a* axis. Three-dimensional data were next collected with the General Electric diffractometer. Integrated intensities were measured with $\theta-2\theta$ scan over 3°; the background was measured at 1.5° on either side of the peak with the crystal stationary. The spect-

^{*} Recently the opposite situation has been found in one of the modifications of mesotartaric acid (Bootsma, 1964).